Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Prod Rep ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629495

RESUMEN

Covering: 1970 through June of 2023Verticillins are epipolythiodioxopiperazine (ETP) alkaloids, many of which possess potent, nanomolar-level cytotoxicity against a variety of cancer cell lines. Over the last decade, their in vivo activity and mode of action have been explored in detail. Notably, recent studies have indicated that these compounds may be selective inhibitors of histone methyltransferases (HMTases) that alter the epigenome and modify targets that play a crucial role in apoptosis, altering immune cell recognition, and generating reactive oxygen species. Verticillin A (1) was the first of 27 analogues reported from fungal cultures since 1970. Subsequent genome sequencing identified the biosynthetic gene cluster responsible for producing verticillins, allowing a putative pathway to be proposed. Further, molecular sequencing played a pivotal role in clarifying the taxonomic characterization of verticillin-producing fungi, suggesting that most producing strains belong to the genus Clonostachys (i.e., Bionectria), Bionectriaceae. Recent studies have explored the total synthesis of these molecules and the generation of analogues via both semisynthetic and precursor-directed biosynthetic approaches. In addition, nanoparticles have been used to deliver these molecules, which, like many natural products, possess challenging solubility profiles. This review summarizes over 50 years of chemical and biological research on this class of fungal metabolites and offers insights and suggestions on future opportunities to push these compounds into pre-clinical and clinical development.

2.
bioRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38328097

RESUMEN

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are investigational antiretroviral agents which potently impair virion maturation by inducing hyper-multimerization of IN and inhibiting its interaction with viral genomic RNA. The pyrrolopyridine-based ALLINI pirmitegravir (PIR) has recently advanced into Phase 2a clinical trials. Previous cell culture based viral breakthrough assays identified the HIV-1(Y99H/A128T IN) variant that confers substantial resistance to this inhibitor. Here, we have elucidated the unexpected mechanism of viral resistance to PIR. While both Tyr99 and Ala128 are positioned within the inhibitor binding V-shaped cavity at the IN catalytic core domain (CCD) dimer interface, the Y99H/A128T IN mutations did not substantially affect direct binding of PIR to the CCD dimer or functional oligomerization of full-length IN. Instead, the drug-resistant mutations introduced a steric hindrance at the inhibitor mediated interface between CCD and C-terminal domain (CTD) and compromised CTD binding to the CCDY99H/A128T + PIR complex. Consequently, full-length INY99H/A128T was substantially less susceptible to the PIR induced hyper-multimerization than the WT protein, and HIV-1(Y99H/A128T IN) conferred >150-fold resistance to the inhibitor compared to the WT virus. By rationally modifying PIR we have developed its analog EKC110, which readily induced hyper-multimerization of INY99H/A128T in vitro and was ~14-fold more potent against HIV-1(Y99H/A128T IN) than the parent inhibitor. These findings suggest a path for developing improved PIR chemotypes with a higher barrier to resistance for their potential clinical use.

3.
iScience ; 26(8): 107408, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37554459

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with high metastasis and therapeutic resistance. Activating transcription factor 4 (ATF4), a master regulator of cellular stress, is exploited by cancer cells to survive. Prior research and data reported provide evidence that high ATF4 expression correlates with worse overall survival in PDAC. Tomatidine, a natural steroidal alkaloid, is associated with inhibition of ATF4 signaling in multiple diseases. Here, we discovered that in vitro and in vivo tomatidine treatment of PDAC cells inhibits tumor growth. Tomatidine inhibited nuclear translocation of ATF4 and reduced the transcriptional binding of ATF4 with downstream promoters. Tomatidine enhanced gemcitabine chemosensitivity in 3D ECM-hydrogels and in vivo. Tomatidine treatment was associated with induction of ferroptosis signaling validated by increased lipid peroxidation, mitochondrial biogenesis, and decreased GPX4 expression in PDAC cells. This study highlights a possible therapeutic approach utilizing a plant-derived metabolite, tomatidine, to target ATF4 activity in PDAC.

4.
ACS Med Chem Lett ; 14(7): 936-942, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37465296

RESUMEN

Optimization of degrader properties is often a challenge due to their beyond-rule-of-5 nature. Given the paucity of known E3 ligases and the often-limited choice of ligands with varied chemical structures for a given protein target, degrader linkers represent the best position within the chimeric molecules to modify their overall physicochemical properties. In this work, a series of AT7519-based CDK9 degraders was assembled using click chemistry, facilitating the tuning of aqueous solubility and lipophilicity while retaining their linker type and molecular weight. Using chromatographic logD and kinetic solubility experiments, we show that degraders with similar chemical constitution but varied position of the embedded triazole demonstrate different lipophilicity and aqueous solubility properties. Overall, this work highlights the impact of triazole placement on linker composition through application of click chemistry for degrader synthesis and its ability to be used to promote the achievement of favorable physicochemical properties.

5.
Nat Prod Rep ; 40(7): 1250-1270, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37387219

RESUMEN

Covering: 2015 through the end of July 2022Ovarian cancer is one of the most common cancers affecting the female reproductive organs and has the highest mortality rate among gynecological cancers. Although botanical drugs and their derivatives, namely members of the taxane and camptothecin families, represent significant therapeutics currently available for the treatment of ovarian cancer, new drugs that have alternative mechanisms of action are still needed to combat the disease. For this reason, many efforts to identify additional novel compounds from botanical sources, along with the further development of existing therapeutics, have continued to appear in the literature. This review is designed to serve as a comprehensive look at both the currently available small-molecule therapeutic options and the recently reported botanically-derived natural products currently being studied and developed as potential future therapeutics that could one day be used against ovarian cancer. Specifically, key properties, structural features, and biological data are highlighted that are important for the successful development of potential agents. Recently reported examples are specifically discussed in the context of "drug discovery attributes," including the presence of structure-activity relationship, mechanism of action, toxicity, and pharmacokinetic studies, to help indicate the potential for future development and to highlight where these compounds currently exist in the development process. The lessons learned from both the successful development of the taxanes and camptothecins, as well as the strategies currently being employed for new drug development, are expected to ultimately help guide the future development of botanical natural products for ovarian cancer.


Asunto(s)
Productos Biológicos , Neoplasias Ováricas , Femenino , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Camptotecina/farmacología , Camptotecina/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico
6.
Mol Pharm ; 20(6): 3049-3059, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37155928

RESUMEN

Verticillins are epipolythiodioxopiperazine alkaloids isolated from a fungus with nanomolar anti-tumor activity in high-grade serous ovarian cancer (HGSOC). HGSOC is the fifth leading cause of death in women, and natural products continue to be an inspiration for new drug entities to help tackle chemoresistance. Verticillin D was recently found in a new fungal strain and compared to verticillin A. Both compounds exhibited nanomolar cytotoxic activity against OVCAR4 and OVCAR8 HGSOC cell lines, significantly reduced 2D foci and 3D spheroids, and induced apoptosis. In addition, verticillin A and verticillin D reduced tumor burden in vivo using OVCAR8 xenografts in the peritoneal space as a model. Unfortunately, mice treated with verticillin D displayed signs of liver toxicity. Tolerability studies to optimize verticillin A formulation for in vivo delivery were performed and compared to a semi-synthetic succinate version of verticillin A to monitor bioavailability in athymic nude females. Formulation of verticillins achieved tolerable drug delivery. Thus, formulation studies are effective at improving tolerability and demonstrating efficacy for verticillins.


Asunto(s)
Antineoplásicos , Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Humanos , Ratones , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Indoles/uso terapéutico , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patología , Neoplasias Ováricas/patología , Línea Celular Tumoral
7.
Commun Chem ; 6(1): 102, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253928

RESUMEN

Retrosynthesis is a procedure where a target molecule is transformed into potential reactants and thus the synthesis routes can be identified. Recently, computational approaches have been developed to accelerate the design of synthesis routes. In this paper,we develop a generative framework G2Retro for one-step retrosynthesis prediction. G2Retro imitates the reversed logic of synthetic reactions. It first predicts the reaction centers in the target molecules (products), identifies the synthons needed to assemble the products, and transforms these synthons into reactants. G2Retro defines a comprehensive set of reaction center types, and learns from the molecular graphs of the products to predict potential reaction centers. To complete synthons into reactants, G2Retro considers all the involved synthon structures and the product structures to identify the optimal completion paths, and accordingly attaches small substructures sequentially to the synthons. Here we show that G2Retro is able to better predict the reactants for given products in the benchmark dataset than the state-of-the-art methods.

8.
Eur J Med Chem ; 254: 115342, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37071962

RESUMEN

Cyclin-dependent kinase 9 (CDK9) is a promising therapeutic target in multiple cancer types, including acute myeloid leukemia (AML). Protein degraders, also known as proteolysis targeting chimeras (PROTACs), have emerged as tools for the selective degradation of cancer targets, including CDK9, complementing the activity of traditional small-molecule inhibitors. These compounds typically incorporate previously reported inhibitors and a known E3 ligase ligand to induce ubiquitination and subsequent degradation of the target protein. Although many protein degraders have been reported in the literature, the properties of the linker necessary for efficient degradation still require special attention. In this study, a series of protein degraders was developed, employing the clinically tested CDK inhibitor AT7519. The purpose of this study was to examine the effect that linker composition, specifically chain length, would have on potency. In addition to establishing a baseline of activity for various linker compositions, two distinct homologous series, a fully alkyl series and an amide-containing series, were prepared, demonstrating the dependence of degrader potency in these series on linker length and the correlation with predicted physicochemical properties.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Leucemia Mieloide Aguda , Humanos , Proteolisis , Quinasa 9 Dependiente de la Ciclina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico
9.
Poult Sci ; 102(4): 102543, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36863122

RESUMEN

Avian pathogenic E. coli (APEC), a causative agent of colibacillosis, is associated with high mortality and morbidity which results in severe economic losses to the poultry industry worldwide. APEC can be transmitted to humans through the consumption of contaminated poultry products. The limited effect of the current vaccines and the advent of drug-resistant strains have necessitated the development of alternative therapies. Previously, we identified 2 small molecules (SMs; [quorum sensing inhibitor; QSI-5] and [growth inhibitor; GI-7]) with high efficacy in vitro and in chickens subcutaneously challenged with APEC O78. Here, we optimized the oral challenge dose of APEC O78 in chickens to mimic the infection in the natural settings, evaluated the efficacy of the GI-7, QSI-5, and combination of GI-7 and QSI-5 (GI7+ QSI-5) in chickens orally infected with APEC, and compared their efficacy to sulfadimethoxine (SDM), an antibiotic currently used to treat APEC. Using the optimized dose of each SM in drinking water, GI-7, QSI-5, GI7+ QSI-5, and SDM were evaluated in chickens challenged with the optimized dose of APEC O78 (1 × 109 CFU/chicken; orally; d 2 of age) and grown on built-up floor litter. Reduction in mortality was 90, 80, 80, and 70% in QSI-5, GI-7+QSI-5, GI-7, and SDM treated groups compared to the positive control (PC), respectively. GI-7, QSI-5, GI-7+QSI-5, and SDM reduced the APEC load in the cecum by 2.2, 2.3, 1.6, and 0.6 logs and in the internal organs by 1.3, 1.2, 1.4, and 0.4 logs compared to PC (P < 0.05), respectively. The cumulative pathological lesions scores were 0.51, 0.24, 0.0, 0.53, and 1.53 in GI-7, QSI-5, GI-7+QSI-5, SDM, and PC groups, respectively. Overall, GI-7 and QSI-5 individually have promising effects as a potential antibiotic-independent approach to control APEC infections in chickens.


Asunto(s)
Infecciones por Escherichia coli , Enfermedades de las Aves de Corral , Humanos , Animales , Escherichia coli , Pollos , Percepción de Quorum , Inhibidores de Crecimiento/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Sulfadimetoxina/farmacología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/prevención & control
10.
mBio ; 13(5): e0180422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36190128

RESUMEN

Lenacapavir (LEN) is a long-acting, highly potent HIV-1 capsid (CA) inhibitor. The evolution of viral variants under the genetic pressure of LEN identified Q67H, N74D, and Q67H/N74D CA substitutions as the main resistance associated mutations (RAMs). Here, we determined high-resolution structures of CA hexamers containing these RAMs in the absence and presence of LEN. Our findings reveal that the Q67H change induces a conformational switch, which adversely affects the inhibitor binding. In the unliganded protein, the His67 side chain adopts the closed conformation by projecting into the inhibitor binding pocket and thereby creating steric hindrance with respect to LEN. Upon the inhibitor binding, the His67 side chain repositions to the open conformation that closely resembles the Gln67 side chain in the WT protein. We propose that the switch from the closed conformation to the open conformation, which is needed to accommodate LEN, accounts for the reduced inhibitor potency with respect to the Q67H CA variant. The N74D CA change results in the loss of a direct hydrogen bond and in induced electrostatic repulsions between CA and LEN. The double Q67H/N74D substitutions exhibited cumulative effects of respective single amino acid changes. An examination of LEN binding kinetics to CA hexamers revealed that Q67H and N74D CA changes adversely influenced the inhibitor binding affinity (KD) by primarily affecting the dissociation rate constant (koff). We used these structural and mechanistic findings to rationally modify LEN. The resulting analog exhibited increased potency against the Q67H/N74D viral variant. Thus, our studies provide a means for the development of second-generation inhibitors with enhanced barriers to resistance. IMPORTANCE LEN is an investigational long-acting agent for future HIV-1 treatment regimens. While ongoing clinical trials have highlighted a largely beneficial profile of LEN for the treatment of HIV-1 infected people with limited therapy options, one notable shortcoming is a relatively low barrier of viral resistance to the inhibitor. Cell culture-based viral breakthrough assays identified N74D, Q67H, and N74D/Q67H capsid changes as the main resistance associated mutations (RAMs). N74D and Q67H capsid substitutions have also emerged in clinical trials in some patients who received subcutaneous LEN. Understanding the structural basis behind viral resistance to LEN is expected to aid in the rational development of improved inhibitors with enhanced barriers to resistance. Here, we report high resolution structures of the main drug resistant capsid variants, which provide mechanistic insight into the viral resistance to LEN. We used these findings to develop an improved inhibitor, which exhibited enhanced activity against the viral Q67H/N74D capsid phenotype compared with that of parental LEN.


Asunto(s)
Fármacos Anti-VIH , Seropositividad para VIH , VIH-1 , Humanos , Cápside/metabolismo , Fármacos Anti-VIH/farmacología , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Seropositividad para VIH/metabolismo , Aminoácidos/metabolismo
11.
Microbiol Spectr ; 10(3): e0028622, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35583333

RESUMEN

Avian pathogenic Escherichia coli (APEC) associated with colibacillosis results in high morbidity and mortality, and severe economic losses to the poultry industry. APEC is a zoonotic pathogen and can infect humans through contaminated poultry products. Vaccination and antibiotic treatment are currently used to control APEC infections; however, the limited effect of vaccines and the emergence of antibiotic-resistant strains have necessitated the development of novel therapeutics. Here, we evaluated seven quorum sensing inhibitors (QSI) identified in our previous study, in APEC-infected chickens. QSIs were administered orally (~92 to 120 µg/bird) and chickens were challenged subcutaneously with APEC. Among them, QSI-5 conferred the best protection (100% reduction in mortality, 82% to 93% reduction in lesions [airsacculitis, perihepatitis, lung congestion, pericarditis] severity, and 5.2 to 6.1 logs reduction in APEC load). QSI-5 was further tested in chickens raised on built-up floor litter using an optimized dose (1 mg/L) in drinking water. QSI-5 reduced the mortality (88.4%), lesion severity (72.2%), and APEC load (2.8 logs) in chickens, which was better than the reduction observed with currently used antibiotic sulfadimethoxine (SDM; mortality 35.9%; lesion severity up to 36.9%; and APEC load up to 2.4 logs). QSI-5 was detected in chicken's blood after 0.5 h with no residues in muscle, liver, and kidney. QSI-5 increased the body weight gain with no effect on the feed conversion ratio and cecal microbiota of the chickens. Metabolomic studies revealed reduced levels of 5'-methylthioadenosine in QSI-5-treated chicken serum. In conclusion, QSI-5 displayed promising effects in chickens and thus, represents a novel anti-APEC therapeutic. IMPORTANCE Avian pathogenic Escherichia coli (APEC), a subgroup of ExPEC, is a zoonotic pathogen with public health importance. Quorum sensing is a mechanism that regulates virulence, biofilm formation, and pathogenesis in bacteria. Here, we identified a novel quorum sensing autoinducer-2 inhibitor, QSI-5, which showed higher anti-APEC efficacy in chickens compared to the currently used antibiotic, sulfadimethoxine at a much lower dose (up to 4,500 times). QSI-5 is readily absorbed with no residues in the tissues. QSI-5 also increased the chicken's body weight gain and did not impact the cecal microbiota composition. Overall, QSI-5 represents a promising lead compound for developing novel anti-virulence therapies with significant implications for treating APEC infections in chickens as well as other ExPEC associated infections in humans. Further identification of its target(s) and understanding the mechanism of action of QSI-5 in APEC will add to the future novel drug development efforts that can overcome the antimicrobial resistance problem.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Enfermedades de las Aves de Corral , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Peso Corporal , Pollos/microbiología , Escherichia coli , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/microbiología , Percepción de Quorum , Sulfadimetoxina/farmacología , Sulfadimetoxina/uso terapéutico
12.
J Nat Prod ; 85(3): 702-719, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35213158

RESUMEN

Research progress from mainly over the last five years is described for a multidisciplinary collaborative program project directed toward the discovery of potential anticancer agents from a broad range of taxonomically defined organisms. Selected lead compounds with potential as new antitumor agents that are representative of considerable structural diversity have continued to be obtained from each of tropical plants, terrestrial and aquatic cyanobacteria, and filamentous fungi. Recently, a new focus has been on the investigation of the constituents of U.S. lichens and their fungal mycobionts. A medicinal chemistry and pharmacokinetics component of the project has optimized structurally selected lead natural products, leading to enhanced cytotoxic potencies against selected cancer cell lines. Biological testing has shown several compounds to have in vivo activity, and relevant preliminary structure-activity relationship and mechanism of action studies have been performed. Several promising lead compounds worthy of further investigation have been identified from the most recent collaborative work performed.


Asunto(s)
Antineoplásicos , Productos Biológicos , Neoplasias , Antineoplásicos/química , Productos Biológicos/química , Humanos , Neoplasias/tratamiento farmacológico , Plantas/química , Relación Estructura-Actividad
13.
ACS Omega ; 7(5): 4482-4491, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35155940

RESUMEN

Human immunodeficiency virus-1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome (AIDS). HIV-1, like all retroviruses, stably integrates its vDNA copy into host chromatin, a process allowing for permanent infection. This essential step for HIV-1 replication is catalyzed by viral integrase (IN) and aided by cellular protein LEDGF/p75. In addition, IN is also crucial for proper virion maturation as it interacts with the viral RNA genome to ensure encapsulation of ribonucleoprotein complexes within the protective capsid core. These key functions make IN an attractive target for the development of inhibitors with various mechanisms of action. We conducted a high-throughput screen (HTS) of ∼370,000 compounds using a homogeneous time-resolved fluorescence-based assay capable of capturing diverse inhibitors targeting multifunctional IN. Our approach revealed chemical scaffolds containing diketo acid moieties similar to IN strand transfer inhibitors (INSTIs) as well as novel compounds distinct from all current IN inhibitors including INSTIs and allosteric integrase inhibitors (ALLINIs). Specifically, our HTS resulted in the discovery of compound 12, with a novel IN inhibitor scaffold amenable for chemical modification. Its more potent derivative 14e similarly inhibited catalytic activities of WT and mutant INs containing archetypical INSTI- and ALLINI-derived resistant substitutions. Further SAR-based optimization resulted in compound 22 with an antiviral EC50 of ∼58 µM and a selectivity index of >8500. Thus, our studies identified a novel small-molecule scaffold for inhibiting HIV-1 IN, which provides a promising platform for future development of potent antiviral agents to complement current HIV-1 therapies.

14.
Cell Death Dis ; 13(1): 45, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013112

RESUMEN

PHY34 is a synthetic small molecule, inspired by a compound naturally occurring in tropical plants of the Phyllanthus genus. PHY34 was developed to have potent in vitro and in vivo anticancer activity against high grade serous ovarian cancer (HGSOC) cells. Mechanistically, PHY34 induced apoptosis in ovarian cancer cells by late-stage autophagy inhibition. Furthermore, PHY34 significantly reduced tumor burden in a xenograft model of ovarian cancer. In order to identify its molecular target/s, we undertook an unbiased approach utilizing mass spectrometry-based chemoproteomics. Protein targets from the nucleocytoplasmic transport pathway were identified from the pulldown assay with the cellular apoptosis susceptibility (CAS) protein, also known as CSE1L, representing a likely candidate protein. A tumor microarray confirmed data from mRNA expression data in public databases that CAS expression was elevated in HGSOC and correlated with worse clinical outcomes. Overexpression of CAS reduced PHY34 induced apoptosis in ovarian cancer cells based on PARP cleavage and Annexin V staining. Compounds with a diphyllin structure similar to PHY34 have been shown to inhibit the ATP6V0A2 subunit of V(vacuolar)-ATPase. Therefore, ATP6V0A2 wild-type and ATP6V0A2 V823 mutant cell lines were tested with PHY34, and it was able to induce cell death in the wild-type at 246 pM while the mutant cells were resistant up to 55.46 nM. Overall, our data demonstrate that PHY34 is a promising small molecule for cancer therapy that targets the ATP6V0A2 subunit to induce autophagy inhibition while interacting with CAS and altering nuclear localization of proteins.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Núcleo Celular/metabolismo , Proteína de Susceptibilidad a Apoptosis Celular/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Neoplasias Ováricas/metabolismo , ATPasas de Translocación de Protón/antagonistas & inhibidores , Transporte Activo de Núcleo Celular/efectos de los fármacos , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proteína de Susceptibilidad a Apoptosis Celular/genética , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/patología , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Phyllanthus/química , Pronóstico
15.
Cell Biochem Biophys ; 80(1): 45-61, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34387841

RESUMEN

Our earlier in vitro and in vivo studies have revealed that the phytosterol, pentalinonsterol (cholest-4,20,24-trien-3-one) (PEN), isolated from the roots of Pentalinon andrieuxii, possesss immunomodulatory properties in macrophages and dendritic cells. Leishmaniasis, caused by the infection of Leishmania spp. (a protozoan parasite), is emerging as the second-leading cause of mortality among the tropical diseases and there is an unmet need for a pharmacological intervention of leishmaniasis. Given the beneficial immunomodulatory actions and lipophilic properties of PEN, the objective of this study was to elucidate the mechanism(s) of action of the immunomodulatory action(s) of PEN in macrophages through the modulation of phospholipase A2 (PLA2) activity that might be crucial in the antileishmanial action of PEN. Therefore, in this study, we investigated whether PEN would modulate the activity of PLA2 in RAW 264.7 macrophages and mouse bone marrow-derived primary macrophages (BMDMs) in vitro and further determined how the upstream PLA2 activation would regulate the downstream cytokine release in the macrophages. Our current results demonstrated that (i) PEN induced PLA2 activation (arachidonic acid release) in a dose- and time-dependent manner that was regulated upstream by the mitogen-activated protein kinases (MAPKs); (ii) the PEN-induced activation of PLA2 was attenuated by the cPLA2-specific pharmacological inhibitors; and (iii) the cPLA2-specific pharmacological inhibitors attenuated the release of inflammatory cytokines from the macrophages. For the first time, our current study demonstrated that PEN exhibited its immunomodulatory actions through the activation of cPLA2 in the macrophages, which potentially could be used in the development of a pharmacological intervention against leishmaniasis.


Asunto(s)
Fitosteroles , Animales , Macrófagos/metabolismo , Ratones , Fosfolipasas A2/metabolismo , Fitosteroles/metabolismo , Esteroles/metabolismo , Esteroles/farmacología
16.
ACS Med Chem Lett ; 12(4): 625-630, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33859802

RESUMEN

The verticillins, a class of epipolythiodioxopiperazine alkaloids (ETPs) first described 50 years ago with the discovery of verticillin A (1), have gained attention due to their potent activity against cancer cells, noted both in vitro and in vivo. In this study, the complex scaffold afforded through optimized fermentation was used as a feedstock for semisynthetic efforts designed to explore the reactivity of the C11 and C11' hydroxy substituents. Functionality introduced at these positions would be expected to impact not only the potency but also the pharmacokinetic properties of the resulting compound. With this in mind, verticillin H (2) was used as a starting material to generate nine semisynthetic analogues (4-12) containing a variety of ester, carbonate, carbamate, and sulfonate moieties. Likewise, verticillin A succinate (13) was synthesized from 1 to demonstrate the successful application of this strategy to other ETPs. The synthesized compounds and their corresponding starting materials (i.e., 1 and 2) were screened for activity against a panel of melanoma, breast, and ovarian cancer cell lines: MDA-MB-435, MDA-MB-231, and OVCAR3. All analogues retained IC50 values in the nanomolar range, comparable to, and in some cases more potent than, the parent compounds.

18.
Phytochemistry ; 180: 112521, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33099129

RESUMEN

Three undescribed stictanes, nieblastictanes A-C, two flavicanes, nieblaflavicanes A and B, together with three already reported stictanes, along with the known compounds (+)-usnic acid, sekikaic acid, divaricatic acid, and divaricatinic acid methyl ester were isolated from an ethyl acetate extract of the western North American lichen Niebla homalea. The structures of the new and known compounds were established by spectroscopic methods including nuclear magnetic resonance spectroscopy, mass spectrometry and electronic circular dichroism. Among the compounds isolated, usnic acid exhibited moderately potent antiproliferative activities against the A2780 ovarian (IC50 3.8 µM) and MCF-7 breast cancer (IC50 6.8 µM) cell lines. A plausible mode of formation of the chlorine-containing compound nieblastictane C is provided and the contribution of the isolated compounds to the chemotaxonomy of United States lichen species of the genus Niebla is also discussed.


Asunto(s)
Ascomicetos , Líquenes , Neoplasias Ováricas , Línea Celular Tumoral , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Estados Unidos
19.
Science ; 370(6514): 360-364, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33060363

RESUMEN

The potent HIV-1 capsid inhibitor GS-6207 is an investigational principal component of long-acting antiretroviral therapy. We found that GS-6207 inhibits HIV-1 by stabilizing and thereby preventing functional disassembly of the capsid shell in infected cells. X-ray crystallography, cryo-electron microscopy, and hydrogen-deuterium exchange experiments revealed that GS-6207 tightly binds two adjoining capsid subunits and promotes distal intra- and inter-hexamer interactions that stabilize the curved capsid lattice. In addition, GS-6207 interferes with capsid binding to the cellular HIV-1 cofactors Nup153 and CPSF6 that mediate viral nuclear import and direct integration into gene-rich regions of chromatin. These findings elucidate structural insights into the multimodal, potent antiviral activity of GS-6207 and provide a means for rationally developing second-generation therapies.


Asunto(s)
Fármacos Anti-VIH , Cápside , VIH-1 , Humanos , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Cápside/química , Cápside/efectos de los fármacos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Células HEK293 , Células HeLa , VIH-1/química , VIH-1/efectos de los fármacos , Factores de Escisión y Poliadenilación de ARNm/química , Proteínas de Complejo Poro Nuclear/química , Dominios Proteicos , Integración Viral
20.
ACS Chem Biol ; 15(3): 758-765, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32083834

RESUMEN

As genome mining becomes a more widely used approach to identify bacterial natural products, the challenge of matching biosynthetic gene clusters to their cognate secondary metabolites has become more apparent. Bioinformatic platforms such as AntiSMASH have made great progress in predicting chemical structures from genetic information, however the predicted structures are often incomplete. This complicates identifying the predicted compounds by mass spectrometry. Secondary metabolites produced by cyanobacteria represent a unique opportunity for bridging this gap. Cultured cyanobacteria incorporate inorganic nitrogen provided in chemically defined media into all nitrogen-containing secondary metabolites. Thus, stable isotope labeling with 15N labeled nitrate and subsequent comparative metabolomics can be used to match biosynthetic gene clusters to their cognate compounds in cell extracts. Analysis of the sequenced genome of Nostoc sp. UIC 10630 identified six biosynthetic gene clusters predicted to encode the production of a secondary metabolite with at least one nitrogen atom. Comparative metabolomic analysis of the 15N labeled and unlabeled cell extracts revealed four nitrogen containing compounds that contained the same number of nitrogen atoms as were predicted in the biosynthetic gene clusters. Two of the four compounds were new secondary metabolites, and their structures were elucidated by NMR, HRESIMS, and MS/MS.


Asunto(s)
Extractos Celulares/química , Cianobacterias/metabolismo , Genoma Bacteriano/genética , Metabolómica/métodos , Isótopos de Nitrógeno/metabolismo , Secuencia de Bases , Productos Biológicos/química , Vías Biosintéticas , Técnicas de Cultivo de Célula , Cianobacterias/química , Glicopéptidos/análisis , Marcaje Isotópico/métodos , Lipopéptidos/análisis , Espectroscopía de Resonancia Magnética , Familia de Multigenes , Isótopos de Nitrógeno/química , Oligopéptidos/análisis , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...